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Current problem motivating this work 
Physics modeling of radiation belts need adiabatic 
invariants (L*, µ, K). In particular L* is computationally 
expensive for more sophisticated magnetic field models. 

Static dipole field not accurate enough 
Modern research methods use data assimilation combining 
in-situ observations with models. L* location of data changes 
with geomagnetic activity. 

Model  Inputs  L* +me (1440 values)￼ 

Tsyganenko et al. [2003]  Dst, p, By, Bz, G2, G3  2h 31m 07s 

Tsyganenko [2002a, b]  Dst, p, By, Bz, G1, G2  3h 55m 35s 

Tsyganenko [1995, 1996]  Dst, p, By, Bz  1h 43m 56s 

Tsyganenko [1989]  Kp  4m 10s 

More accurate models are too slow 
McCollough et al. (2008) compared computing times with 
different models. Compiler optimizations and parallelizing  
are possible but limited. 

Accuracy of current field models are limited 
Most popular models are empirical. Huang et al. (2008) report 
ΔL* ~ 13% (quiet) and ΔL* ~ 50% during storm times.  

Inaccuracies of magnetic field models could alter radial 
phase-space density profiles of radiation belt electrons. 

Solution: a surrogate model using a neural network 
Surrogate models: polynomial regression, Kriging, neural network 

* do not contain details about physical processes 
* focus only on input-output relationship 
* are by definition fast to compute 

The results are not exact but sufficiently close to the original 
model used for training. 

LANL* library replaces L* from Tsyganenko T04 
with a much faster neural network 
The results are sufficiently accurate while reducing the  
calculation time by 5-6 orders of magnitude. 

The accuracy of neural network  
is a function of number of nodes (N) and training samples (M). 
Cybenko 1989 proved that a sufficiently large neural network 
is able to approximate any function with arbitrary accuracy. 

Training of neural networks 
automatically adjusts weights of interconnections to produce  
the desired outputs. 

LANL* V2.0: a FORTRAN library 

We have developed a prototype based on this technique. The 
prototype is based on the Tsyganenko (T04) magnetic 

field model. 

The training data set consists of solar wind conditions over  

nearly an entire solar cycle – from 1995 through 2005. 

10,000 spacecraft locations were randomly chosen over a  

3D region surrounding the earth from 1.5 Re to 10 Re. 

Future work: The last closed drift shell 
is a function of pitch angle and requires a separate  
neural network. 

The LANL* library 
takes several solar wind  
conditions and the satellite  
coordinates to calculate L*  
and the maximum valid  
L* value. Additional  
parameters improved the  
trainability of the neural  
network. 

Validation results show only small error by neural 
network technique 
We validated the neural network with independent out-of-sample 
data and show that the error by the neural network is sufficiently 
small and typically less than 1%. Accuracy is reduced  to 
a small degree with smaller pitch angles. 

LANL* V1.0 library is freely available 
We have published the approach and the prototype LANL* V1.0, 
which uses the Tsyganenko T01-storm model, in the  
Journal for Geoscientific Model Development. The library 
includes the complete neural network, Makefile for IDL and  
FORTRAN, and examples. 

A patent application describing this method is 
currently pending. 
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LANL* library is almost one million times 
faster 
Our library provides a speedup of 5-6 orders of 
magnitude while providing sufficiently accurate L* 
values. 

Training a neural network is straightforward. Below is the 
matrix vector equation to be solved when training a single-
hidden-layer neural network. 


